Software for structured total least squares problems: User’s guide
نویسندگان
چکیده
The package contains ANSI C software with Matlab mex interface for structured total least squares estimation problems. The allowed structures in the data matrix are block-Toeplitz, block-Hankel, unstructured, and noise free. Combinations of blocks with this structures can be specified. The computational complexity of the algorithms is O(m), where m is the sample size.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملHigh-performance numerical algorithms and software for structured total least squares
We present a software package for structured total least-squares approximation problems. The allowed structures in the data matrix are block-Toeplitz, block-Hankel, unstructured, and exact. Combination of blocks with these structures can be specified. The computational complexity of the algorithms is O(m), where m is the sample size. We show simulation examples with different approximation prob...
متن کاملWeighted/Structured Total Least Squares problems and polynomial system solving
Weighted and Structured Total Least Squares (W/STLS) problems are generalizations of Total Least Squares with additional weighting and/or structure constraints. W/STLS are found at the heart of several mathematical engineering techniques, such as statistics and systems theory, and are typically solved by local optimization methods, having the drawback that one cannot guarantee global optimality...
متن کاملStructured Total Maximum Likelihood: An Alternative to Structured Total Least Squares
Linear inverse problems with uncertain measurement matrices appear in many different applications. One of the standard techniques for solving such problems is the total least squares (TLS) method. Recently, an alternative approach has been suggested, based on maximizing an appropriate likelihood function assuming that the measurement matrix consists of random Gaussian variables. We refer to thi...
متن کاملOverview of total least-squares methods
We review the development and extensions of the classical total least squares method and describe algorithms for its generalization to weighted and structured approximation problems. In the generic case, the classical total least squares problem has a unique solution, which is given in analytic form in terms of the singular value decomposition of the data matrix. The weighted and structured tot...
متن کامل